Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Aluminum-doped zinc oxide sol-gel thin films: Influence of the sol's water content on the resistivity

Identifieur interne : 000199 ( Main/Repository ); précédent : 000198; suivant : 000200

Aluminum-doped zinc oxide sol-gel thin films: Influence of the sol's water content on the resistivity

Auteurs : RBID : Pascal:14-0095685

Descripteurs français

English descriptors

Abstract

Thin films of indium tin oxide (ITO) have gained substantial interest due to their optical and electrical properties. Since ITO is an expensive material and indium is a rare element, considerable attempts have been made to replace it by, e.g., aluminum-doped zinc oxide (ZnO:Al). The production of ZnO:Al is less cost-intensive, especially if the sol-gel technique is applied, while its properties are comparable to those of ITO. In this study, we demonstrate that the electrical properties of ZnO:Al thin films can be improved considerably by the addition of small amounts of ultrapure water to the dip coating solution during the preparation. The lowest resistivity obtained with a film prepared from a sol containing 0.2 M water is 2.8 10-3 Ωcm. Optical modeling thus indicates an improvement of the free carrier mobility of films prepared from sols in the presence of additional water. The films prepared have an average thickness of 340 nm and a solar transmittance above 85% after annealing in a forming gas atmosphere. Clearly, the addition of water to the sol has a positive impact on the resistivity of the final ZnO:Al thin film. We suggest the observed increase of the free carrier mobility to be due to an improved electron transfer at the grain boundaries between the spherical nanoparticles.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0095685

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Aluminum-doped zinc oxide sol-gel thin films: Influence of the sol's water content on the resistivity</title>
<author>
<name sortKey="Nehmann, Julia B" uniqKey="Nehmann J">Julia B. Nehmann</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Solar Energy Research Hamelin (ISFH), Am Ohrberg 1</s1>
<s2>31860 Emmerthal</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>31860 Emmerthal</wicri:noRegion>
<wicri:noRegion>Am Ohrberg 1</wicri:noRegion>
<wicri:noRegion>31860 Emmerthal</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ehrmann, Nicole" uniqKey="Ehrmann N">Nicole Ehrmann</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Solar Energy Research Hamelin (ISFH), Am Ohrberg 1</s1>
<s2>31860 Emmerthal</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>31860 Emmerthal</wicri:noRegion>
<wicri:noRegion>Am Ohrberg 1</wicri:noRegion>
<wicri:noRegion>31860 Emmerthal</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Reineke Koch, Rolf" uniqKey="Reineke Koch R">Rolf Reineke-Koch</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Solar Energy Research Hamelin (ISFH), Am Ohrberg 1</s1>
<s2>31860 Emmerthal</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>31860 Emmerthal</wicri:noRegion>
<wicri:noRegion>Am Ohrberg 1</wicri:noRegion>
<wicri:noRegion>31860 Emmerthal</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bahnemann, Detlef W" uniqKey="Bahnemann D">Detlef W. Bahnemann</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Institute for Technical Chemistry, Gottfried Wilhelm Leibniz University Hannover, Callinstrasse 3A</s1>
<s2>30167 Hannover</s2>
<s3>DEU</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Hanovre</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0095685</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0095685 INIST</idno>
<idno type="RBID">Pascal:14-0095685</idno>
<idno type="wicri:Area/Main/Corpus">000035</idno>
<idno type="wicri:Area/Main/Repository">000199</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0040-6090</idno>
<title level="j" type="abbreviated">Thin solid films</title>
<title level="j" type="main">Thin solid films</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Annealing</term>
<term>Carrier mobility</term>
<term>Crystal defects</term>
<term>Dip coating</term>
<term>Electrical conductivity</term>
<term>Electrical properties</term>
<term>Electron transfer</term>
<term>Free carrier</term>
<term>Grain boundaries</term>
<term>Hydrolysis</term>
<term>Indium</term>
<term>Indium oxide</term>
<term>Liquid phase deposition</term>
<term>Modelling</term>
<term>Moisture</term>
<term>Nanoparticles</term>
<term>Nanostructured materials</term>
<term>Optical properties</term>
<term>Sol-gel process</term>
<term>Theoretical study</term>
<term>Thin films</term>
<term>Tin oxide</term>
<term>Transmittance</term>
<term>Zinc additions</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Addition zinc</term>
<term>Procédé sol gel</term>
<term>Couche mince</term>
<term>Teneur eau</term>
<term>Conductivité électrique</term>
<term>Oxyde d'indium</term>
<term>Oxyde d'étain</term>
<term>Propriété optique</term>
<term>Propriété électrique</term>
<term>Indium</term>
<term>Dépôt immersion</term>
<term>Modélisation</term>
<term>Etude théorique</term>
<term>Porteur libre</term>
<term>Mobilité porteur charge</term>
<term>Facteur transmission</term>
<term>Recuit</term>
<term>Transfert électron</term>
<term>Joint grain</term>
<term>Défaut cristallin</term>
<term>Nanoparticule</term>
<term>Nanomatériau</term>
<term>Dépôt phase liquide</term>
<term>Hydrolyse</term>
<term>Al2O3</term>
<term>ZnO</term>
<term>8115L</term>
<term>7361</term>
<term>7363</term>
<term>7866</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Thin films of indium tin oxide (ITO) have gained substantial interest due to their optical and electrical properties. Since ITO is an expensive material and indium is a rare element, considerable attempts have been made to replace it by, e.g., aluminum-doped zinc oxide (ZnO:Al). The production of ZnO:Al is less cost-intensive, especially if the sol-gel technique is applied, while its properties are comparable to those of ITO. In this study, we demonstrate that the electrical properties of ZnO:Al thin films can be improved considerably by the addition of small amounts of ultrapure water to the dip coating solution during the preparation. The lowest resistivity obtained with a film prepared from a sol containing 0.2 M water is 2.8 10
<sup>-3</sup>
Ωcm. Optical modeling thus indicates an improvement of the free carrier mobility of films prepared from sols in the presence of additional water. The films prepared have an average thickness of 340 nm and a solar transmittance above 85% after annealing in a forming gas atmosphere. Clearly, the addition of water to the sol has a positive impact on the resistivity of the final ZnO:Al thin film. We suggest the observed increase of the free carrier mobility to be due to an improved electron transfer at the grain boundaries between the spherical nanoparticles.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0040-6090</s0>
</fA01>
<fA02 i1="01">
<s0>THSFAP</s0>
</fA02>
<fA03 i2="1">
<s0>Thin solid films</s0>
</fA03>
<fA05>
<s2>556</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Aluminum-doped zinc oxide sol-gel thin films: Influence of the sol's water content on the resistivity</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>NEHMANN (Julia B.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>EHRMANN (Nicole)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>REINEKE-KOCH (Rolf)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>BAHNEMANN (Detlef W.)</s1>
</fA11>
<fA14 i1="01">
<s1>Institute for Solar Energy Research Hamelin (ISFH), Am Ohrberg 1</s1>
<s2>31860 Emmerthal</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Institute for Technical Chemistry, Gottfried Wilhelm Leibniz University Hannover, Callinstrasse 3A</s1>
<s2>30167 Hannover</s2>
<s3>DEU</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>168-173</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13597</s2>
<s5>354000506177460270</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>30 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0095685</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Thin solid films</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Thin films of indium tin oxide (ITO) have gained substantial interest due to their optical and electrical properties. Since ITO is an expensive material and indium is a rare element, considerable attempts have been made to replace it by, e.g., aluminum-doped zinc oxide (ZnO:Al). The production of ZnO:Al is less cost-intensive, especially if the sol-gel technique is applied, while its properties are comparable to those of ITO. In this study, we demonstrate that the electrical properties of ZnO:Al thin films can be improved considerably by the addition of small amounts of ultrapure water to the dip coating solution during the preparation. The lowest resistivity obtained with a film prepared from a sol containing 0.2 M water is 2.8 10
<sup>-3</sup>
Ωcm. Optical modeling thus indicates an improvement of the free carrier mobility of films prepared from sols in the presence of additional water. The films prepared have an average thickness of 340 nm and a solar transmittance above 85% after annealing in a forming gas atmosphere. Clearly, the addition of water to the sol has a positive impact on the resistivity of the final ZnO:Al thin film. We suggest the observed increase of the free carrier mobility to be due to an improved electron transfer at the grain boundaries between the spherical nanoparticles.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A15L</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70C61</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70C63</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B70H66</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Addition zinc</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Zinc additions</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Procédé sol gel</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Sol-gel process</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Teneur eau</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Moisture</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Conductivité électrique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Electrical conductivity</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Oxyde d'étain</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Tin oxide</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Estaño óxido</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Propriété optique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Optical properties</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Propriété électrique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Electrical properties</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Indium</s0>
<s2>NC</s2>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Indium</s0>
<s2>NC</s2>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Dépôt immersion</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Dip coating</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Modélisation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Modelling</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Etude théorique</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Theoretical study</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Porteur libre</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Free carrier</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Portador libre</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Mobilité porteur charge</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Carrier mobility</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Facteur transmission</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Transmittance</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Factor transmisión</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Recuit</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Annealing</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Transfert électron</s0>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Electron transfer</s0>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Joint grain</s0>
<s5>33</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Grain boundaries</s0>
<s5>33</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Défaut cristallin</s0>
<s5>34</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Crystal defects</s0>
<s5>34</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Nanoparticule</s0>
<s5>35</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Nanoparticles</s0>
<s5>35</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>36</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>36</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Dépôt phase liquide</s0>
<s5>37</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Liquid phase deposition</s0>
<s5>37</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Hydrolyse</s0>
<s5>38</s5>
</fC03>
<fC03 i1="24" i2="3" l="ENG">
<s0>Hydrolysis</s0>
<s5>38</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Al2O3</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>ZnO</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>8115L</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>7361</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>7363</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>7866</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>132</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000199 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000199 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0095685
   |texte=   Aluminum-doped zinc oxide sol-gel thin films: Influence of the sol's water content on the resistivity
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024